86 research outputs found

    Anatomical Connectivity Influences both Intra- and Inter-Brain Synchronizations

    Get PDF
    Recent development in diffusion spectrum brain imaging combined to functional simulation has the potential to further our understanding of how structure and dynamics are intertwined in the human brain. At the intra-individual scale, neurocomputational models have already started to uncover how the human connectome constrains the coordination of brain activity across distributed brain regions. In parallel, at the inter-individual scale, nascent social neuroscience provides a new dynamical vista of the coupling between two embodied cognitive agents. Using EEG hyperscanning to record simultaneously the brain activities of subjects during their ongoing interaction, we have previously demonstrated that behavioral synchrony correlates with the emergence of inter-brain synchronization. However, the functional meaning of such synchronization remains to be specified. Here, we use a biophysical model to quantify to what extent inter-brain synchronizations are related to the anatomical and functional similarity of the two brains in interaction. Pairs of interacting brains were numerically simulated and compared to real data. Results show a potential dynamical property of the human connectome to facilitate inter-individual synchronizations and thus may partly account for our propensity to generate dynamical couplings with others

    Inter-Brain Synchronization during Social Interaction

    Get PDF
    During social interaction, both participants are continuously active, each modifying their own actions in response to the continuously changing actions of the partner. This continuous mutual adaptation results in interactional synchrony to which both members contribute. Freely exchanging the role of imitator and model is a well-framed example of interactional synchrony resulting from a mutual behavioral negotiation. How the participants' brain activity underlies this process is currently a question that hyperscanning recordings allow us to explore. In particular, it remains largely unknown to what extent oscillatory synchronization could emerge between two brains during social interaction. To explore this issue, 18 participants paired as 9 dyads were recorded with dual-video and dual-EEG setups while they were engaged in spontaneous imitation of hand movements. We measured interactional synchrony and the turn-taking between model and imitator. We discovered by the use of nonlinear techniques that states of interactional synchrony correlate with the emergence of an interbrain synchronizing network in the alpha-mu band between the right centroparietal regions. These regions have been suggested to play a pivotal role in social interaction. Here, they acted symmetrically as key functional hubs in the interindividual brainweb. Additionally, neural synchronization became asymmetrical in the higher frequency bands possibly reflecting a top-down modulation of the roles of model and imitator in the ongoing interaction

    Complex networks: new trends for the analysis of brain connectivity

    Full text link
    Today, the human brain can be studied as a whole. Electroencephalography, magnetoencephalography, or functional magnetic resonance imaging techniques provide functional connectivity patterns between different brain areas, and during different pathological and cognitive neuro-dynamical states. In this Tutorial we review novel complex networks approaches to unveil how brain networks can efficiently manage local processing and global integration for the transfer of information, while being at the same time capable of adapting to satisfy changing neural demands.Comment: Tutorial paper to appear in the Int. J. Bif. Chao

    Classification methods for ongoing EEG and MEG signals

    Full text link
    Classification algorithms help predict the qualitative properties of a subject's mental state by extracting useful information from the highly multivariate non-invasive recordings of his brain activity. In particular, applying them to Magneto-encephalography (MEG) and electro-encephalography (EEG) is a challenging and promising task with prominent practical applications to e.g. Brain Computer Interface (BCI). In this paper, we first review the principles of the major classification techniques and discuss their application to MEG and EEG data classification. Next, we investigate the behavior of classification methods using real data recorded during a MEG visuomotor experiment. In particular, we study the influence of the classification algorithm, of the quantitative functional variables used in this classifier, and of the validation method. In addition, our findings suggest that by investigating the distribution of classifier coefficients, it is possible to infer knowledge and construct functional interpretations of the underlying neural mechanisms of the performed tasks. Finally, the promising results reported here (up to 97% classification accuracy on 1-second time windows) reflect the considerable potential of MEG for the continuous classification of mental state

    Human Gamma Oscillations during Slow Wave Sleep

    Get PDF
    Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30–50 Hz) and high (60–120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves (“IN-phase” pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave (“ANTI-phase” pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks

    Ten years of Nature Reviews Neuroscience: insights from the highly cited

    Full text link

    Détection de la fatigue mentale à partir de données électrophysiologiques

    No full text
    PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Improving quantification of functional networks with EEG inverse problem: evidence from a decoding point of view.

    No full text
    National audienceDecoding experimental conditions from single trial Electroencephalographic (EEG) signals is becoming a major challenge for the study of brain function and real-time applications such as Brain Computer Interface. EEG source reconstruction offers principled ways to estimate the cortical activities from EEG signals. But to what extent it can enhance informative brain signals in single trial has not been addressed in a general setting. We tested this using the minimum norm estimate solution (MNE) to estimate spectral power and coherence features at the cortical level. With a fast implementation, we computed a support vector machine (SVM) classifier output from these quantities in real-time, without prior on the relevant functional networks. We applied this approach to single trial decoding of ongoing mental imagery tasks using EEG data recorded in 5 subjects. Our results show that reconstructing the underlying cortical network dynamics significantly outperforms a usual electrode level approach in terms of information transfer and also reduces redundancy between coherence and power features, supporting a decrease of volume conduction effects. Additionally, the classifier coefficients reflect the most informative features of network activity, showing an important contribution of localized motor and sensory brain areas, and of coherence between areas up to 6cm distance. This study provides a computationally efficient and interpretable strategy to extract information from functional networks at the cortical level in single trial. Moreover, this sets a general framework to evaluate the performance of EEG source reconstruction methods by their decoding abilities

    De l'estimation à la classification des activités corticales. Une approche par sélection de variables pour les Interfaces Cerveau Machine

    Get PDF
    Nous proposons la mise en oeuvre d'une méthodologie de classification des signaux électro-encéphalographiques (EEG) exploitant l'estimation des activités électriques du cortex par résolution de problème inverse. Les difficultés dues au grand nombre de sources corticales estimées (environ 10000) sont contournées en utilisant un algorithme de sélection de variables multivarié: le Séparateur à Vaste Marge pour la norme zéro (L0-SVM). Cette méthode détermine un petit sous ensemble de sources les plus utiles pour différencier les états mentaux. Nous appliquons l'ensemble de cette approche à une expérience d'Interface Cerveau Machine asynchrone enregistrée dans notre laboratoire. Celle-ci permet d'améliorer le taux de bonne classification par rapport à la mesure directe de l'activité des électrodes EEG
    corecore